& Warta PPKS, 2025, 30(3): 197-210

TRANSFORMASI PEMULIAAN TANAMAN KELAPA SAWIT MELALUI
SELEKSI GENOMIK DAN KECERDASAN BUATAN MENUJU DATA-DRIVEN
SMART BREEDING

Fauziatul Fitriyah* dan Heri Adriwan Siregar

Abstrak - Penggunaan genomic selection (GS), machine learning (ML), dan artificial intelligence (Al) semakin
mendorong pergeseran paradigma dari pemuliaan fenotipik tradisional menuju predictive breeding. Pendekatan
ini memanfaatkan data genetik untuk memprediksi potensi suatu individu pada tahap perkembangan awal,
sehingga secara drastis dapat mempercepat genetic gain. Tinjauan ini mengkaji transformasi menuju pemuliaan
prediktif yang memanfaatkan GS dan Al untuk mempercepat target kemajuan genetik. GS memungkinkan
prediksi pemuliaan individu menggunakan penanda genomik, mengatasi keterbatasan marker-assisted selection
(MAS). Integrasi dengan algoritma Al seperti artificial neural networks (ANN) meningkatkan akurasi prediksi
hingga 32.8% dengan memperhitungkan interaksi non-linear dan epistasis. Implementasi komersial oleh Sime
Darby Plantation (GenomeSelect™) membuktikan viabilitas ekonomi GS melalui strategi seleksi induk dan
reduksi marker. Roadmap ke depan memerlukan pendekatan hibrid (GBLUP, model multi-trait, Al), investasi
dalam high-throughput phenotyping dan enviromics, serta kolaborasi global untuk menciptakan ekosistem
pemuliaan berbasis data (data-driven smart breeding) yang powerful.

Kata kunci: genomic selection (GS), genetika kuantitatif, machine learning, pemuliaan tanaman, predictive
breeding

PENDAHULUAN melalui Marker-Assisted Selection (MAS), yang
memungkinkan pelacakan gen atau lokus pengendali
sifat menggunakan penanda molekuler. Teknologi ini
diklaim efektif untuk sifat sederhana yang dikendalikan
oleh gen mayor, misalnya ketahanan monogenik dan
morfologi tertentu (Collard et al., 2005; Collard &
Mackill, 2007; Hospital, 2009). Namun, efektivitas
MAS menjadi terbatas ketika diterapkan pada sifat
kuantitatif kompleks yang menentukan produktivitas,
seperti hasil, ketahanan penyakit poligenik, dan
toleransi cekaman abiotik (Bernardo, 2008; Heffner et

Pemuliaan tanaman merupakan pilar fundamental
bagi peningkatan produktivitas pertanian dan
ketahanan pangan global. Selama beberapa dekade,
seleksi fenotipik konvensional telah memberikan
kontribusi signifikan terhadap perbaikan sifat-sifat
penting seperti produktivitas, adaptasi, dan kualitas
(Bernardo, 2020). Pada tanaman perennial seperti
kelapa sawit (Elaeis guineensis), seleksi fenotipik
membutuhkan waktu yang sangat panjang karena sifat
target baru dapat dievaluasi setelah tanaman berbuah,

dengan interval generasi mencapai 10—12 tahun (Xu & al., 2009).

Crouch, 2008; Cros et al., 2015). Kondisi ini secara Keterbatasan tersebut mendorong lahirnya
signifikan memperlambat laju perolehan kemajuan  Paradigma baru, yaitu Genomic Selection (GS)
genetik (genetic gain). (Meuwissen et al., 2001). Tidak seperti MAS yang

berfokus pada sejumlah kecil lokus, GS
memanfaatkan seluruh penanda genom yang tersedia
untuk mengestimasi nilai pemuliaan genomik
(Genomic Estimated Breeding Value, GEBV) tanpa
tergantung pada fenotipe langsung (Heffner et al.,
Fauziatul Fitriyah*(5) 2009). Pendekatan ini tampak berpotensi efektif
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kompleks (Alemu et al., 2024). Penerapannya menjadi
sangat relevan pada tanaman perennial tropis dengan
siklus panjang seperti kelapa sawit, kakao, dan karet
(Seyumetal., 2022).

Kemajuan terkini menunjukkan adanya
konvergensi GS dengan kecerdasan buatan (Artificial
Intelligence, Al). Algoritma machine learning dan deep
learning mampu menangkap hubungan non-linear,
interaksi gen-gen, serta interaksi genotipe-lingkungan
(GxE) yang sering luput dari model linear tradisional
(Crossa et al., 2017; Montesinos-Lépez et al., 2021).
Al juga berperan dalam otomasi fenotipik secara
presisi tinggi (high-throughput phenotyping),
perancangan persilangan virtual, hingga pembuatan
sistem komputer pintar yang membantu pengambil
keputusan (Araus & Kefauver, 2018; Shakoor et al.,
2017). Integrasi GS dan Al melahirkan kerangka
predictive breeding sebuah pendekatan proaktif yang
mempersingkat siklus pemuliaan, meningkatkan
akurasi seleksi, dan merancang kultivar unggul adaptif
terhadap perubahan iklim dan tekanan penyakit
(Seyum et al., 2022).

Kelapa sawit menempati posisi strategis sekaligus
rentan dalam lanskap pemuliaan modern ini. Sebagai
sumber minyak nabati paling produktif di dunia, kelapa
sawit menyumbang 35-40% pasokan global meski
hanya menempati kurang dari 10% total luas lahan
tanaman penghasil minyak (Barcelos et al., 2015;
Corley & Tinker, 2016). Produktivitas tinggi
menjadikannya komoditas efisien secara lingkungan,
tetapi industri kelapa sawit menghadapi ancaman
serius: penyakit Ganoderma boninense yang semakin
agresif (Khoo & Chong, 2023), dampak variabilitas
iklim yang menekan hasil (Chiwarwipa et al., 2020),
serta kebutuhan varietas toleran kekeringan (Bayona-
Rodriguez & Romero, 2024). Dengan siklus pemuliaan
konvensional yang dapat melebihi 20 tahun,
pendekatan standar yang selama ini dilakukan jelas
tidak memadai.

Oleh karena itu, pemuliaan prediktif berbasis GS
dan Al berpotensi menjadi jalur transformasi yang tak
terelakkan. Bukti empiris dari uji kelayakan GS, seleksi
klonal berbasis genom, desain populasi contoh
(training population), pemodelan hibrida, hingga
penerapan Jaringan Saraf Tiruan (Artificial Neural
Network—ANN) menunjukkan bahwa pendekatan ini
bukan sekadar wacana, tetapi strategi yang siap
diimplementasikan (Kwong et al., 2017; Cros et al.,
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2018; Nyouma et al., 2020; Osorio-Guarin et al., 2019).
Integrasi data genomik dengan phenotyping
berkapasitas tinggi melalui citra drone, satelit, dan
sensor lapangan akan semakin memperkuat strategi
ini, menandai dimulainya era pemuliaan cerdas
berbasis data (data-driven smart breeding) bagi kelapa
sawit untuk mendukung produktivitas, keberlanjutan,
dan ketahanan pangan global (Araus & Kefauver,
2018).

EVOLUSIPEMULIAAN PREDIKTIF

Perjalanan menuju pemuliaan prediktif ditandai
dengan evolusi metodologi yang berlapis, dari
pendekatan untuk karakter sederhana hingga
teknologi yang dirancang untuk mengurai genetika
kuantitatif yang kompleks.

Dari Linkage Mapping ke Genome-Wide
Association Study

Pemetaan pautan biparental (bi-parental linkage
mapping) umum digunakan untuk memetakan gen
atau QTL yang dilakukan menggunakan populasi hasil
persilangan dua tetua. Pendekatan ini pada awalnya
menjadi andalan untuk mengidentifikasi QTL pada
sifat-sifat sederhana hingga moderat. Namun,
pemetaan pautan biparental memiliki resolusi yang
terbatas untuk sifat-sifat kompleks yang dikendalikan
oleh banyak gen dengan efek kecil. Keterbatasan ini
memicu peralihan ke pemetaan asosiasi, yang
awalnya dilakukan melalui pendekatan kandidat gen
(candidate gene approach). Meskipun relative murah
dan mudah dijalankan, pendekatan kandidat gen
sangat bergantung pada pengetahuan awal tentang
gen yang diduga terlibat dan sering menghasilkan
temuan yang tidak konsisten (non-reproducible) serta
banyak mengalami false negatives (kesalahan tipe 1)
akibat kemampuan statistik yang terbatas dan
kegagalan dalam mengevaluasi interaksi genetik x
lingkungan (Myles et al., 2009; Patnala et al., 2013;
Sandhu et al., 2024).

Metode Genome-Wide Association Study (GWAS)
kemudian berkembang sebagai terobosan signifikan
dalam identifikasi QTL. Berbeda dengan linkage
analysis yang mengandalkan rekombinasi dalam
keluarga terkontrol, GWAS memanfaatkan prinsip
Linkage Disequilibrium (LD) dalam populasi besar
yang tidak terstruktur. GWAS memanfaatkan seluruh
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rekombinasi yang terakumulasi dari forces evolusioner
(mutasi, genetic driff, seleksi) sepanjang sejarah
populasi, sehingga memberikan resolusi pemetaan
yang jauh lebih tinggi (Varshney et al., 2021).

Publikasi dalam konteks kelapa sawit,
ketersediaan genom referensi (Singh et al., 2013) dan
pengembangan OP200K SNP array berkapasitas
tinggi (Kwong et al., 2016) memberikan fondasi teknis
yang solid bagi pelaksanaan GWAS. Studi GWAS
pertama berhasil mengidentifikasi QTL yang linkage
untuk sifat kandungan minyak mesokarp (Teh et al.,
2016). Analisis profil LD menunjukkan perbedaan yang

jelas antara populasi komersial Deli x AVROS (LD
decay: 25 Kb pada r? = 0.12) dan populasi semi-liar
Deli x Nigerian (LD decay: 20 Kb pada r* = 0.15),
sekaligus membuktikan bahwa kepadatan marker
pada array OP200K (1 SNP per 11 Kb) telah
mencukupi untuk analisis GWAS. QTL mayor untuk
kandungan minyak berhasil dipetakan pada kromosom
5.

Studi lebih lanjut menggunakan teknologi
sekuensing generasi lanjut (Next-Generation
Sequencing—-NGS) semakin memperjelas arsitektur
genetik sifat-sifat penting kelapa sawit (Tabel 1).

Tabel 1. Pemetaan Genetik dan GWAS pada Tanaman Kelapa Sawit menggunakan Teknologi NGS

Sumber Temuan Utama

Pootakham et al

Identifikasi 3 QTL untuk tinggi batang dan 1 QTL untuk bobot tandan.

(2015)
Teh et al. (2016)

Menemukan SNP yang berasosiasi signifikan dengan rendemen minyak,

dengan QTL mayor di Kromosom 5.

Bai et al. (2017)

kandungan minyak.

Bai et al. (2018)
Afrika.
Gan et al. (2018)

marker SNP dan DArT.

Melaporkan penanda GBS vyang terkait erat dengan 4 QTL untuk

Membangun peta linkage berdensitas sangat tinggi untuk kelapa sawit

Mengembangkan dan mengintegrasikan peta genetik menggunakan

Meskipun GWAS memiliki daya deteksi yang
kuat, tapi rentan terhadap faktor pengganggu,
seperti struktur populasi dan hubungan
kekerabatan tersembunyi (cryptic relatedness),
yang dapat menghasilkan asosiasi positif palsu
(false-positive). Berbagai metode koreksi seperti
kontrol genomik, koreksi Bonferroni, dan
pengendalian false discovery rate (FDR)
digunakan untuk mengatasi hal ini. Hasil GWAS
dapat digunakan untuk memulai program MAS,
bahkan tanpa mengetahui gen kandidat yang
terlibat. Namun, untuk karakter-karakter kompleks,
efektivitas MAS seringkali terbatas karena efek
genetik individual dari QTL yang terdeteksi terlalu
kecil untuk memberikan respons seleksi yang

signifikan (Bernardo, 2008). Deteksi gen
dengan efek kecil melalui GWAS umumnya
membutuhkan lebih dari 10.000 aksesi, jumlah
yang tidak mudah untuk dipenuhi dalam banyak
sistem tanaman (Bush dan Moore, 2012).
Variasi genetik umum seperti single nucleotide
variants (SNV) yang sering digunakan tampak
kesulitan menjelaskan heritabilitas pada
karakter komplek (missing heritabilty). GWAS
pada akhirnya cenderung kurang mumpuni
menilai asosiasi langsung antara fenotipe
dengan gen atau causal variants. GWAS juga
rentan menghasilkan asosiasi nyata yang
cukup banyak, sehingga menjadi tidak
informatif (Zhou et al. 2022).

199



ﬁ Fauziatul Fitriyah™ dan Heri Adriwan Siregar

Genomic Selection

Keterbatasan mendasar pada MAS, diatasi oleh
Meuwissen et al. (2001) dengan memperkenalkan
Genomic Selection (GS). Pendekatan GS tidak
berusaha mengidentifikasi QTL individual tertentu,
melainkan mengkonsolidasikan efek semua penanda
di seluruh genom untuk mengestimasi nilai pemuliaan
total (GEBV). Studi simulasi awal oleh Wong &
Bernardo (2008) menunjukkan bahwa meskipun
pemendekan siklus pemuliaan belum signifikan (dari
14-25 tahun menjadi 11-23 tahun), GS telah berhasil
meningkatkan genetic gain per unit biaya sebesar
26-65%; bahkan dengan ukuran populasi yang relatif
kecil (N=50-70).

Temuan ini kemudian divalidasi secara empiris
dalam populasi kelapa sawit sungguhan (Cros et al.,
2015; Kwong et al., 2017). Akurasi prediksi GS terbukti
lebih tinggi menjadi menarik ketika modelnya
"dipandu" atau diinformasikan oleh hasil-hasil GWAS
(informed genomic selection), menunjukkan sinergi
yang kuat antara kedua pendekatan tersebut (Kwong
etal., 2017).

Penerapan Komersial: Kasus GenomeSelect™

Bukti paling nyata dari keberhasilan GS datang dari
implementasi komersial. Sime Darby Plantation pada
tahun 2016 meluncurkan dan menanam secara
komersial benih GenomeSelect™—benih kelapa sawit
pertama di dunia yang dipilih secara genetik untuk sifat
hasil tinggi menggunakan GS (Teh et al., 2020).

Implementasi ini memecahkan kendala ekonomi
dengan strategi yang inovatif. Alih-alih menggenotipe
setiap benih tenera yang mahal, model GS diterapkan
pada induk dura dan pisifera. Cukup dengan satu kali
genotipisasi untuk setiap induk, produksi massal benih
tenera unggul dapat langsung dihasilkan dari
persilangan induk-induk terpilih. Selain itu, densitas
marker secara drastis dikurangi melalui filtering LD
tanpa mengorbankan akurasi (Kwong et al., 2017).
Kombinasi kedua strategi ini berhasil memangkas
biaya genotyping lebih dari 95%, memungkinkan
produksi skala besar benih GenomeSelect™ untuk
memenuhi target peremajaan (replanting) tahunan
seluas 1000 hektar, dengan tujuan akhir mencapai
tingkat replanting tahunan 5% di seluruh perkebunan
Sime Darby.

Evolusi secara keseluruhan dari linkage-mapping
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—GWAS—GS merepresentasikan transisi
paradigmatik dalam pemuliaan prediktif. Linkage
mapping efektif untuk sifat sederhana, GWAS
memberikan resolusi tinggi untuk penemuan QTL
pada karakter kompleks, dan GS memungkinkan
prediksi nilai pemuliaan secara holistik, sehingga
mempercepat perbaikan genetik dalam skala industri.

IMPLEMENTASI GS DALAM PEMULIAAN KELAPA
SAWIT

Penerapan GS dalam pemuliaan kelapa sawit
menjadi mungkin dan semakin matang setelah
tersedianya dua infrastruktur genomik kunci: (1)
publikasi sekuens genom referensi (Elaeis guineensis)
oleh Singh et al. (2013), dan (2) pengembangan
OP200K SNP array berdensitas tinggi oleh Kwong et
al. (2016). Kedua terobosan ini menjadi fondasi untuk
mengevaluasi akurasi prediksi GS bagi berbagai sifat
agronomi penting.

Studi-studi pendahuluan membuktikan bahwa GS
dapat memprediksi sifat-sifat kompleks yang
dikendalikan oleh banyak gen dengan efek kecil (minor
genes), seperti hasil minyak per pohon dan per hektar
(Cros et al.,, 2015; Kwong et al., 2017). GS juga
menunjukkan potensi untuk memprediksi komposisi
asam lemak (mis., rasio palmitat dan oleat) yang
sangat penting bagi industri pangan dan oleokimia,
serta ketahanan terhadap penyakit Ganoderma
boninense yang merupakan ancaman eksistensial
bagi perkebunan di Asia Tenggara (Corley & Tinker,
2016; Nyouma et al., 2020). Seperti yang diharapkan,
akurasi prediksi (7y) bervariasi antar sifat, di mana sifat
dengan heritabilitas tinggi (seperti komposisi asam
lemak) secara konsisten lebih mudah diprediksi
daripada sifat dengan heritabilitas rendah (seperti hasil
minyak total).

Keberhasilan GS tidak hanya tergantung pada data
peta genotipe yang beresolusi tinggi, tetapi juga pada
kualitas dan kuantitas data fenotipe. Hal ini menjadi
tantangan besar mengingat siklus hidup kelapa sawit
yang sangat panjang (14-25 tahun per generasi) dan
sifat-sifat targetnya yang kompleks, seringkali
memerlukan pengukuran destruktif dan analisis
laboratorium yang intensif (Cros et al., 2018).
Variabilitas lingkungan yang tinggi di lokasi tropis
semakin memperumit pengumpulan data fenotipe
yang konsisten. Untuk mengatasi kendala ini,
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teknologi fenotipik secara presisi tinggi berbasis drone,
citra multispektral/hiperspektral, dan sensor LiDAR
mulai diintegrasikan. Teknologi ini, yang
dikombinasikan dengan algoritma machine learning,
memungkinkan akuisisi data fenotipik skala besar
dengan resolusi tinggi dan relatif efisien, yang
kemudian dapat digunakan untuk meningkatkan
akurasi model prediksi GS (genomic-enabled
prediction) (Araus & Kevaufer, 2018; Bongomin et al.,
2024).

Upaya meningkatkan kinerja GS juga dilakukan
melalui pengembangan model statistik yang lebih
canggih. GBLUP (Genomic Best Linear Unbiased
Prediction) tetap menjadi model standar yang robust
dan banyak digunakan. Model-model Bayesian
(seperti BayesA, BayesB, BayesC1T) mulai diadopsi
untuk sifat-sifat yang diduga memiliki arsitektur genetik
dengan beberapa QTL berefek besar (Kwong et al.,
2017; Cros et al., 2018). Algoritma Al dan machine
learning (seperti Random Forest dan Deep Learning)
yang paling mutakhir sedang diuji untuk menangkap
interaksi non-linear (epistasis) dan interaksi genotipe-
lingkungan (GxE) yang tidak dapat dimodelkan
dengan baik oleh pendekatan linear tradisional
(Crossa et al., 2025; Montesinos-Lopez et al., 2021).
Hasil awal menunjukkan bahwa hibridisasi antara
model tradisional dan algoritma Al dapat
menghasilkan prediksi yang lebih stabil dan akurat
untuk sifat-sifat paling kompleks (Osorio-Guarin et al.,
2022).

Meskipun potensinya sangat besar, implementasi
GS masih menghadapi beberapa tantangan yaitu:

a) Biaya: Meskipun harga genotip terus menurun,
biaya untuk program pemuliaan skala besar tetap
signifikan (Wong & Bernardo, 2008).

b) Ukuran Populasi Contoh (training population):
Akurasi GS sangat bergantung pada ukuran dan
keragaman training population, yang sering kali
terbatas dalam program pemuliaan kelapa sawit.
Akibatnya, akurasi prediksi yang kadang kurang
dapat diandalkan untuk populasi berkerabat jauh
dengan training population (Cros et al., 2018).

c) Interaksi Genotipe x Lingkungan (GxE): Kondisi
lingkungan tropis yang sangat heterogen
menciptakan interaksi GXE yang kompleks,
menyulitkan pembangunan model prediksi yang
stabil across locations (Nyouma et al., 2020).

(d) Infrastruktur dan SDM: Keterbatasan infrastruktur
pengelolaan data berskala besar (bioinformatika,
komputasi awan) dan kurangnya SDM yang
terampil dalam bidang pemuliaan, statistik, dan
ilmu data merupakan hambatan utama (Osorio-
Guarin etal., 2022).

Jika tantangan-tantangan ini dapat diatasi, GS
berpotensi mentransformasi pemuliaan kelapa sawit.
Pendekatan ini dapat memperpendek siklus
pemuliaan dari 14-25 tahun menjadi hanya 11-23
tahun atau bahkan lebih singkat (Cros et al., 2018). GS
juga meningkatkan efisiensi seleksi untuk sifat-sifat
kompleks yang sebelumnya tidak dapat ditangani oleh
MAS, dan pada akhirnya mengurangi biaya jangka
panjang dengan meminimalkan kebutuhan akan uiji
lapang multi-tahun yang mahal (Kwong et al., 2017).
GS bukan sekadar inovasi teknis, melainkan
pendekatan utama untuk mengembangkan
varietas/klon kelapa sawit yang lebih produktif,
berkelanjutan, dan tangguh terhadap tekanan penyakit
dan iklim (Osorio-Guarin et al., 2022).

PERAN KECERDASAN BUATAN (Al)

Perkembangan terkini menunjukkan bahwa
penerapan GS konvensional saja belum cukup untuk
mengatasi kompleksitas sifat kuantitatif pada kelapa
sawit, yang sangat dipengaruhi oleh interaksi genetik
non-aditif (dominansi, epistasis) dan variabilitas
lingkungan yang tinggi. Dalam konteks ini, Kecerdasan
Buatan (Al), khususnya Machine Learning (ML) dan
Deep Learning (DL), muncul sebagai pelengkap
strategis yang sangat efektif.

Model linear seperti GBLUP efektif untuk
komponen aditif, tetapi seringkali gagal menangkap
pola non-linear yang kompleks. Kontribusi Al
dievaluasi melalui kemampuannya meningkatkan
akurasi prediksi (Tg) yang didefinisikan sebagai korelasi
antara Genomic Estimated Breeding Value (GEBV)
dan True Breeding Value (TBV):

17y = cor(G' EBVTBV) (1)

Nilai 7y ini secara langsung menentukan laju kemajuan
genetik tahunan (R))

i X1, X0o
Ra:% (2)
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Tabel 3. Perbandingan metode prediksi untuk pemuliaan kelapa sawit

Metode Karakteristik Kelebihan Kelemahan Aplikasi
GBLUP Model linear Stabil, sederhana, Kurang Prediksi sifat aditif
(Genomic aditif berbasis dan banyak menangkap seperti hasil tandan
Best Linear matriks digunakan sebagai efek dominansi, dan kandungan
Unbiased hubungan baseline. epistasis, dan minyak awal
Prediction) genomik. interaksi GXE. (Kwong et al.
2017).
Bayesian Model Baik untuk sifat Perlu komputasi Estimasi komposisi
Methods probabilistik dengan distribusi intensif; asam lemak (oleat,
(BayesA, dengan efek gen tidak performa palmitat) dengan
BayesB, distribusi prior merata. bergantung akurasi tinggi (Teh
BayesCpP) berbeda. pada asumsi et al. 2020).
prior.
Random Algoritma Menangkap Interpretasi Klasifikasi
Forest (RF) ensemble hubungan non- model terbatas; ketahanan
berbasis pohon linear, relatif tahan kurang efektif Ganoderma pada
keputusan. terhadap untuk data bibit dengan data
overfitting. genomik ultra- citra (Azmi et al.
besar. 2021).
Support Algoritma Akurat untuk Skala buruk Deteksi dini infeksi
Vector berbasis klasifikasi untuk dataset Ganoderma
Machine hyperplane biner/multi-kelas; genomik besar; menggunakan citra
(SVM) optimal. cocok untuk tuning hiperspektral (Azmi
dataset kecil— parameter rumit. et al. 2021).
menengah.
Artificial Model jaringan Menangkap Membutuhkan Prediksi hasil
Neural syaraf berlapis interaksi genetik data besar; minyak dengan
Networks sederhana. non-linear; rawan overfitting akurasi lebih tinggi
(ANN) fleksibel. tanpa dibanding GBLUP
regularisasi. (Cros et al. 2025).
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Metode Karakteristik Kelebihan Kelemahan Aplikasi

Deep Model neural Dapat memproses Butuh dataset Analisis fenotipe
Learning network dengan data multi-modal masif, otomatis dari citra
(DL) (CNN, banyak lapisan. (genomik + citra + komputasi drone/satelit, serta
RNN, dll.) omics); sangat mahal, integrasi genomik-

kuat untuk pola

kompleks.

interpretabilitas fenotipe (Ng et al.,

rendah. 2024;
Prasiwiningrum &
Lubis, 2025; Kwong

et al., 2021).

di mana i =intensitas seleksi, 0g=deviasi genetik, dan
L = panjang siklus generasi (Heffner et al. 2009).
Nilai 7y dapat ditingkatkan dengan Al, sehingga
mempercepat kemajuan genetik meski siklus generasi
kelapa sawit panjang (14-25 tahun).

Tg yang meningkat, Al secara langsung dapat
mempercepat Ra, mengkompensasi siklus generasi
kelapa sawit yang panjang. Bukti terbaru menunjukkan
bahwa ANN yang dioptimalkan dapat meningkatkan
akurasi prediksi untuk hasil minyak hingga 32.8%
dibandingkan dengan GBLUP (Cros et al., 2025).

Peran Al melampaui sekedar pemodelan prediktif. Al
menjadi pendorong untuk:

1. Fenotipik secara presisi tinggi (high-throughput
phenotyping): Algoritma Al memproses data mentah
dari drone, sensor multispektral, LiDAR, dan
pencitraan hiperspektral untuk mengekstraksi trait
fenotipik secara otomatis dan akurat (Husin et al.,
2020).

2. Diagnosis Penyakit: Al telah digunakan untuk
mendeteksi infeksi Ganoderma boninense pada
tahap bibit secara non-destruktif menggunakan data
hiperspektral, mencapai akurasi klasifikasi 94.8%
dengan Support Vector Machine (SVM) (Azmi et al.,
2020).

3. Integrasi Multi-Omics: Al mampu mengintegrasikan
data heterogen dari genomik, transkriptomik,
metabolomik, dan fenomik untuk membangun model
prediksi yang lebih komprehensif (Martin et al., 2022).

4. Pemodelan Interaksi Genotipe x Lingkungan
(GxE): Konsep enviromics — integrasi data
lingkungan ke dalam model pemuliaan — diperkuat
oleh Al. Model statistik untuk GxE:

yij=H+gite+(gxe)+e; @)

dimana Y;j = fenotipe, gi= efek genotipe, €j= efek
lingkungan, (g x e);; = interaksi genotipe x lingkungan
dan ¢;; =galat residual (Cooper et al. 2014).

Meskipun menjanjikan, integrasi Al
menghadapi tantangannya sendirikebutuhan akan
dataset pelatihan yang sangat besar dan
berkualitas tinggi, infrastruktur komputasi
berkinerja tinggi, dan yang paling krusial, SDM
yang kompeten di persimpangan ilmu pemuliaan
tanaman, bioinformatika, dan ilmu data sebuah
kolaborasi yang masih dalam tahap perkembangan di
banyak negara produsen kelapa sawit.

ROADMAP STRATEGIS PEMULIAAN PREDIKTIF
KELAPA SAWIT

Implementasi pemuliaan prediktif memerlukan
pendekatan komprehensif yang mengintegrasikan
metodologi pemodelan canggih, teknologi fenomik
terbaru, dan implementasi throughout seluruh
siklus pemuliaan. Strategi ini dirancang untuk
menciptakan sistem pemuliaan yang efisien dan
akurat.
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Pendekatan Pemodelan Hibrid yang Adaptif

Tidak ada satu model universal yang optimal untuk
semua skenario pemuliaan. Oleh karena itu,
diperlukan strategi pemodelan hibrid yang
memanfaatkan keunggulan berbagai pendekatan.
Model GBLUP tetap menjadi pilihan utama untuk
seleksi rutin karena stabilitas dan efisiensi biayanya.
Untuk sifat-sifat dengan heritabilitas rendah,
penerapan model multi-sifat dan multi-lingkungan
terbukti meningkatkan akurasi prediksi secara
signifikan. Sementara untuk karakter kompleks yang
melibatkan interaksi non-linear dan epistasis,
algoritma kecerdasan buatan seperti ANN dan
Random Forest menawarkan kemampuan prediktif
yang unggul (Cros et al., 2025; Crossa et al., 2017).
Integrasi berlapis ini memungkinkan program
pemuliaan mencapai optimasi antara akurasi prediksi
dan efisiensi biaya.

Integrasi Teknologi Prediksi dalam Siklus
Pemuliaan

Teknologi genomik dan prediksi perlu
diintegrasikan secara menyeluruh ke dalam seluruh
tahapan siklus pemuliaan. Implementasi mencakup
seleksi dini progeni berbasis nilai pemuliaan genomik,
simulasi persilangan in silico untuk identifikasi
pasangan orangtua terbaik, dan seleksi klon pada
tahap pembibitan. Konsep Reciprocal Recurrent
Genomic Selection (RRGS) menjadi relevan untuk
program hibrida kelapa sawit dalam memaksimalkan
pemanfaatan heterosis (Cros et al., 2018).
Pendekatan ini memungkinkan percepatan siklus
pemuliaan yang signifikan.

Investasi dalam Fenomik dan Enviromik

Kualitas data fenotipik menjadi penentu utama
keberhasilan pemuliaan prediktif. Investasi dalam
teknologi fenotipik secara presisi tinggi (high-
throughput phenotyping) berbasis drone, sensor
canggih, dan pencitraan satelit diperlukan untuk
akuisisi data fenotipik skala besar. Pengembangan
platform enviromics secara pararel untuk integrasi
data tanah, iklim, dan manajemen perkebunan akan
meningkatkan akurasi prediksi performa genotipe
pada kondisi spesifik lokasi (Cooper et al., 2014;
Resende et al.,, 2021). Konvergensi antara data
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genotipik, fenotipik, dan lingkungan ini menciptakan
dasar yang kuat untuk pengambilan keputusan
pemuliaan yang presisi.

KESIMPULAN

Pemuliaan prediktif yang memanfaatkan Genomic
Selection (GS) dan Kecerdasan Buatan (Al) menandai
perubahan paradigma mendasar dalam pemuliaan
kelapa sawit. Pendekatan ini menawarkan solusi untuk
mengatasi kendala klasik berupa siklus generasi yang
panjang dan inefisiensi seleksi untuk sifat-sifat
kompleks. Keberhasilannya bergantung pada
ketersediaan data genotipe dan fenotipe berkualitas
tinggi, integrasi teknologi phenomics dan enviromics,
serta pengembangan model statistik dan Al yang
canggih. Kolaborasi global dalam berbagi data dan
sumber daya, coupled dengan investasi besar dalam
infrastruktur digital dan pengembangan kapasitas
SDM, merupakan prasyarat mutlak untuk
mewujudkannya. Pemuliaan kelapa sawit dengan
dukungan penuh siap bertransformasi menjadi sistem
yang lebih cerdas, efisien, dan berkelanjutan, yang
pada akhirnya akan menjawab tantangan ketahanan
pangan dan energi di abad ke-21.
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